Constellation diagram for rectangular 16-QAM.
s
Q
A
M
(
t
)
=
A
c
∑
k
=
−
∞
∞
a
I
k
p
(
t
−
k
T
s
)
cos
(
ω
c
t
)
−
A
c
∑
k
=
−
∞
∞
a
Q
k
p
(
t
−
k
T
s
)
sin
(
ω
c
t
)
a
I
k
=
{
−
3
2
,
−
1
2
,
1
2
,
3
2
}
a
Q
k
=
{
−
3
2
,
−
1
2
,
1
2
,
3
2
}
{\displaystyle {\begin{aligned}&s_{QAM}(t)=A_{c}\sum \limits _{k=-\infty }^{\infty }{a_{I_{k}}p\left(t-kT_{s}\right)\cos \left(\omega _{c}t\right)-A_{c}\sum \limits _{k=-\infty }^{\infty }{a_{Q_{k}}p\left(t-kT_{s}\right)\sin \left(\omega _{c}t\right)}}\\&a_{I_{k}}=\left\{-{\frac {3}{\sqrt {2}}},-{\frac {1}{\sqrt {2}}},{\frac {1}{\sqrt {2}}},{\frac {3}{\sqrt {2}}}\right\}\\&a_{Q_{k}}=\left\{-{\frac {3}{\sqrt {2}}},-{\frac {1}{\sqrt {2}}},{\frac {1}{\sqrt {2}}},{\frac {3}{\sqrt {2}}}\right\}\\\end{aligned}}}
Demodulación de la señal QAM In-Phase (Proyección horizontal de la constelación 16-QAM)[ editar ]
a
I
k
=
a
k
⋅
cos
(
φ
k
)
{\displaystyle a_{I_{k}}=a_{k}\cdot \cos(\varphi _{k})}
Una demodulación sin errores nos proporcionará 2 bits; podemos verlo matemáticamente:
log
2
(
M
=
4
)
=
2
b
i
t
{\displaystyle \log _{2}\left(M=4\right)=2bit}
y
R
(
t
)
=
A
R
∑
k
=
−
∞
∞
a
I
k
p
(
t
−
k
T
s
)
+
n
I
(
t
)
a
I
k
=
{
−
3
2
,
−
1
2
,
1
2
,
3
2
}
A
=
1
2
a
I
k
=
{
a
′
00
′
=
−
3
A
a
′
01
′
=
−
A
a
′
10
′
=
+
A
a
′
11
′
=
+
3
A
}
→
{
m
′
00
′
=
∫
0
T
s
s
′
00
′
(
t
)
k
p
∗
(
t
)
∂
t
=
∫
0
T
s
−
3
A
p
(
t
)
p
∗
(
t
)
∂
t
=
−
3
A
T
s
m
′
01
′
=
∫
0
T
s
s
′
01
′
(
t
)
k
p
∗
(
t
)
∂
t
=
∫
0
T
s
−
A
p
(
t
)
p
∗
(
t
)
∂
t
=
−
A
T
s
m
′
10
′
=
∫
0
T
s
s
′
10
′
(
t
)
k
p
∗
(
t
)
∂
t
=
∫
0
T
s
+
A
p
(
t
)
p
∗
(
t
)
∂
t
=
+
A
T
s
m
′
11
′
=
∫
0
T
s
s
′
11
′
(
t
)
k
p
∗
(
t
)
∂
t
=
∫
0
T
s
+
3
A
p
(
t
)
p
∗
(
t
)
∂
t
=
+
3
A
T
s
V
T
=
{
0
,
±
2
A
T
s
}
σ
2
=
η
2
T
s
P
e
≃
1
4
⋅
Q
(
|
V
T
−
m
|
σ
2
)
+
1
4
⋅
2
Q
(
|
V
T
−
m
|
σ
2
)
+
1
4
⋅
2
Q
(
|
V
T
−
m
|
σ
2
)
+
1
4
⋅
Q
(
|
V
T
−
m
|
σ
2
)
=
P
e
≃
1
4
⋅
Q
(
|
−
2
A
T
s
−
(
−
3
A
T
s
)
|
σ
2
)
+
1
4
⋅
2
Q
(
|
−
2
A
T
s
−
(
−
A
T
s
)
|
σ
2
)
+
1
4
⋅
2
Q
(
|
0
−
A
T
s
|
σ
2
)
+
1
4
⋅
Q
(
|
2
A
T
s
−
3
A
T
s
|
σ
2
)
=
P
e
≃
3
2
Q
(
A
T
s
σ
2
)
=
3
2
Q
(
A
T
s
η
2
T
s
)
=
3
2
Q
(
A
2
T
s
2
η
2
T
s
)
=
3
2
Q
(
2
A
2
T
s
η
)
{\displaystyle {\begin{aligned}&y_{R}(t)=A_{R}\sum \limits _{k=-\infty }^{\infty }{a_{I_{k}}p\left(t-kT_{s}\right)+n_{I}(t)}\\&a_{I_{k}}=\left\{-{\frac {3}{\sqrt {2}}},-{\frac {1}{\sqrt {2}}},{\frac {1}{\sqrt {2}}},{\frac {3}{\sqrt {2}}}\right\}\\&A={\frac {1}{\sqrt {2}}}\\&a_{I_{k}}=\left\{{\begin{aligned}&a_{'00'}=-3A\\&a_{'01'}=-A\\&a_{'10'}=+A\\&a_{'11'}=+3A\\\end{aligned}}\right\}\to \left\{{\begin{aligned}&m_{'00'}=\int _{0}^{T_{s}}{s_{'00'}(t)kp^{*}\left(t\right)\partial t}=\int _{0}^{T_{s}}{-3Ap(t)p^{*}\left(t\right)\partial t}=-3AT_{s}\\&m_{'01'}=\int _{0}^{T_{s}}{s_{'01'}(t)kp^{*}\left(t\right)\partial t}=\int _{0}^{T_{s}}{-Ap(t)p^{*}\left(t\right)\partial t}=-AT_{s}\\&m_{'10'}=\int _{0}^{T_{s}}{s_{'10'}(t)kp^{*}\left(t\right)\partial t}=\int _{0}^{T_{s}}{+Ap(t)p^{*}\left(t\right)\partial t}=+AT_{s}\\&m_{'11'}=\int _{0}^{T_{s}}{s_{'11'}(t)kp^{*}\left(t\right)\partial t}=\int _{0}^{T_{s}}{+3Ap(t)p^{*}\left(t\right)\partial t}=+3AT_{s}\\\end{aligned}}\right.\\&V_{T}=\left\{0,\pm 2AT_{s}\right\}\\&{\sqrt {\sigma ^{2}}}={\sqrt {{\frac {\eta }{2}}T_{s}}}\\&P_{e}\simeq {\frac {1}{4}}\cdot Q\left({\frac {\left|V_{T}-m\right|}{\sqrt {\sigma ^{2}}}}\right)+{\frac {1}{4}}\cdot 2Q\left({\frac {\left|V_{T}-m\right|}{\sqrt {\sigma ^{2}}}}\right)+{\frac {1}{4}}\cdot 2Q\left({\frac {\left|V_{T}-m\right|}{\sqrt {\sigma ^{2}}}}\right)+{\frac {1}{4}}\cdot Q\left({\frac {\left|V_{T}-m\right|}{\sqrt {\sigma ^{2}}}}\right)=\\&P_{e}\simeq {\frac {1}{4}}\cdot Q\left({\frac {\left|-2AT_{s}-\left(-3AT_{s}\right)\right|}{\sqrt {\sigma ^{2}}}}\right)+{\frac {1}{4}}\cdot 2Q\left({\frac {\left|-2AT_{s}-\left(-AT_{s}\right)\right|}{\sqrt {\sigma ^{2}}}}\right)+{\frac {1}{4}}\cdot 2Q\left({\frac {\left|0-AT_{s}\right|}{\sqrt {\sigma ^{2}}}}\right)+{\frac {1}{4}}\cdot Q\left({\frac {\left|2AT_{s}-3AT_{s}\right|}{\sqrt {\sigma ^{2}}}}\right)=\\&P_{e}\simeq {\frac {3}{2}}Q\left({\frac {AT_{s}}{\sqrt {\sigma ^{2}}}}\right)={\frac {3}{2}}Q\left({\frac {AT_{s}}{\sqrt {{\frac {\eta }{2}}T_{s}}}}\right)={\frac {3}{2}}Q\left({\sqrt {\frac {A^{2}T_{s}^{2}}{{\frac {\eta }{2}}T_{s}}}}\right)={\frac {3}{2}}Q\left({\sqrt {\frac {2A^{2}T_{s}}{\eta }}}\right)\\\end{aligned}}}
E
s
c
=
1
4
⋅
E
′
00
′
+
1
4
⋅
E
′
01
′
+
1
4
⋅
E
′
10
′
+
1
4
⋅
E
′
11
′
E
′
00
′
=
E
′
11
′
=
∫
0
T
s
s
′
00
′
2
(
t
)
∂
t
=
(
±
3
A
)
2
T
s
=
9
A
2
T
s
E
′
01
′
=
E
′
10
′
=
∫
0
T
s
s
′
01
′
2
(
t
)
∂
t
=
(
±
A
)
2
T
s
=
A
2
T
s
E
s
c
=
5
A
2
T
s
P
e
≃
3
2
Q
(
2
A
2
T
s
η
)
=
3
2
Q
(
2
5
E
s
c
η
)
{\displaystyle {\begin{aligned}&E_{sc}={\frac {1}{4}}\cdot E_{'00'}+{\frac {1}{4}}\cdot E_{'01'}+{\frac {1}{4}}\cdot E_{'10'}+{\frac {1}{4}}\cdot E_{'11'}\\&E_{'00'}=E_{'11'}=\int _{0}^{T_{s}}{s_{'00'}^{2}(t)\partial t}=\left(\pm 3A\right)^{2}T_{s}=9A^{2}T_{s}\\&E_{'01'}=E_{'10'}=\int _{0}^{T_{s}}{s_{'01'}^{2}(t)\partial t}=\left(\pm A\right)^{2}T_{s}=A^{2}T_{s}\\&E_{sc}=5A^{2}T_{s}\\&P_{e}\simeq {\frac {3}{2}}Q\left({\sqrt {\frac {2A^{2}T_{s}}{\eta }}}\right)={\frac {3}{2}}Q\left({\sqrt {{\frac {2}{5}}{\frac {E_{sc}}{\eta }}}}\right)\\\end{aligned}}}
Sabiendo que:
E
s
=
log
2
(
M
)
E
b
=
log
2
(
16
)
E
b
=
4
E
b
E
s
=
2
E
s
c
→
P
s
c
=
3
2
Q
(
1
5
E
s
η
)
=
3
2
Q
(
4
5
E
b
η
)
{\displaystyle {\begin{aligned}&E_{s}=\log _{2}\left(M\right)E_{b}=\log _{2}\left(16\right)E_{b}=4E_{b}\\&E_{s}=2E_{sc}\to \\&P_{sc}={\frac {3}{2}}Q\left({\sqrt {{\frac {1}{5}}{\frac {E_{s}}{\eta }}}}\right)={\frac {3}{2}}Q\left({\sqrt {{\frac {4}{5}}{\frac {E_{b}}{\eta }}}}\right)\\\end{aligned}}}
Demodulación de la señal QAM Quadrature (Proyección vertical de la constelación 16-QAM)[ editar ]
a
Q
k
=
a
k
⋅
sin
(
φ
k
)
{\displaystyle a_{Q_{k}}=a_{k}\cdot \sin(\varphi _{k})}
a
Q
k
=
{
−
3
2
,
−
1
2
,
1
2
,
3
2
}
{\displaystyle a_{Q_{k}}=\left\{-{\frac {3}{\sqrt {2}}},-{\frac {1}{\sqrt {2}}},{\frac {1}{\sqrt {2}}},{\frac {3}{\sqrt {2}}}\right\}}
Como se ve, tenemos los mismos símbolos, por lo que la probabilidad de error será análoga.
P
s
c
=
3
2
Q
(
1
5
E
s
η
)
=
3
2
Q
(
4
5
E
b
η
)
{\displaystyle P_{sc}={\frac {3}{2}}Q\left({\sqrt {{\frac {1}{5}}{\frac {E_{s}}{\eta }}}}\right)={\frac {3}{2}}Q\left({\sqrt {{\frac {4}{5}}{\frac {E_{b}}{\eta }}}}\right)}
Finalmente, la probabilidad de error total es:
Teniendo en cuenta que la componente en fase y la componente en cuadratura son independientes, y que el error podría darse por, un error en la componente en fase, pero no en la componente en cuadratura; un error en la componente en cuadratura, pero no en la componente en fase; o un error en ambas componentes:
P
e
=
P
e
r
r
o
r
I
P
n
o
e
r
r
o
r
Q
+
P
n
o
e
r
r
o
r
I
P
e
r
r
o
r
Q
+
P
e
r
r
o
r
I
P
e
r
r
o
r
Q
P
e
=
2
3
2
Q
(
4
5
E
b
η
)
(
1
−
3
2
Q
(
4
5
E
b
η
)
)
+
(
3
2
Q
(
4
5
E
b
η
)
)
2
P
e
=
3
Q
(
4
5
E
b
η
)
−
9
4
(
Q
(
4
5
E
b
η
)
)
2
P
e
≃
3
Q
(
4
5
E
b
η
)
{\displaystyle {\begin{aligned}&P_{e}=P_{errorI}P_{noerrorQ}+P_{noerrorI}P_{errorQ}+P_{errorI}P_{errorQ}\\&P_{e}=2{\frac {3}{2}}Q\left({\sqrt {{\frac {4}{5}}{\frac {E_{b}}{\eta }}}}\right)\left(1-{\frac {3}{2}}Q\left({\sqrt {{\frac {4}{5}}{\frac {E_{b}}{\eta }}}}\right)\right)+\left({\frac {3}{2}}Q\left({\sqrt {{\frac {4}{5}}{\frac {E_{b}}{\eta }}}}\right)\right)^{2}\\&P_{e}=3Q\left({\sqrt {{\frac {4}{5}}{\frac {E_{b}}{\eta }}}}\right)-{\frac {9}{4}}\left(Q\left({\sqrt {{\frac {4}{5}}{\frac {E_{b}}{\eta }}}}\right)\right)^{2}\\&P_{e}\simeq 3Q\left({\sqrt {{\frac {4}{5}}{\frac {E_{b}}{\eta }}}}\right)\end{aligned}}}