Análisis dimensional

De Wikiversidad
Ir a la navegación Ir a la búsqueda
Análisis dimensional
Unidad: Introducción a la Física
Departamento: Departamento de física


El concepto de dimensión se debe a Fourier que, en su obra “Théorie analytique de la chaleur”, dice: “Es necesario hacer notar que cada magnitud, indeterminada o constante, tiene una dimensión que le es propia, y que los términos de una no podrían ser comparados si no tuviesen el mismo exponente de dimensiones”. Es decir, las ecuaciones deben de ser homogéneas dimensionalmente hablando. Esta es la idea que subyace en el fondo de todo el Análisis Dimensional y es lo que hemos oído alguna vez cuando nos dicen que no se pueden sumar peras con manzanas; aunque esto no es estrictamente cierto, puesto que 3 peras y 2 manzanas son 5 frutas.


Explicación[editar]

Existen diferentes sistemas de unidades. Las cantidades físicas pueden expresarse en distintas unidades según la escala en que esté graduado el instrumento de medición.

Una distancia puede expresarse en metros, kilómetros, centímetros o píes, sin importar cual sea la unidad empleada para medir la cantidad física distancia, pues todas ellas se refieren a una dimensión fundamental llamada longitud, representada por L.

El buen manejo de las dimensiones de las cantidades físicas en una ecuación o fórmula física, nos permite comprobar si son correctas y si se trabajaron debidamente.

Al aplicar una ecuación o fórmula física, debemos recordar dos reglas:

  1. Las dimensiones de las cantidades físicas a ambos lados del signo de igualdad, deben ser las mismas.
  2. Sólo pueden sumarse o restarse cantidades físicas de la misma dimensión.


Referencias[editar]