Ir al contenido

Ley de los exponentes

De Wikiversidad


Explicaciones de las leyes

Las tres primeras leyes (x1 = x, x0 = 1 y x-1 = 1/x) son sólo parte de la sucesión natural de exponentes. Mira este ejemplo:


Ejemplo: potencias de 5

 ... etc...    

52 1 × 5 × 5 25 51 1 × 5 5 50 1 1 asddddddd 5-1 1 ÷ 5 0.2 5-2 1 ÷ 5 ÷ 5 0.04

 ... etc...   

verás que los exponentes positivos, cero y negativos son en realidad parte de un mismo patrón, es decir 5 veces más grande (o pequeño) cuando el exponente crece (o disminuye).

La ley que dice que xmxn = xm+n

En xmxn, ¿cuántas veces multiplicas "x"? Respuesta: primero "m" veces, despuésotras "n" veces, en total "m+n" veces.

Ejemplo: x2x3 = (xx) × (xxx) = xxxxx = x5

Así que x2x3 = x(2+3) = x5

La ley que dice que xm/xn = xm-n

Como en el ejemplo anterior, ¿cuántas veces multiplicas "x"? Respuesta: "m" veces, después reduce eso "n" veces (porque estás dividiendo), en total "m-n" veces.

Ejemplo: x4-2 = x4/x2 = (xxxx) / (xx) = xx = x2

(Recuerda que x/x = 1, así que cada vez que hay una x "sobre la línea" y una "bajo la línea" puedes cancelarlas.)

Esta ley también te muestra por qué x0=1 :


Ejemplo: x2/x2 = x2-2 = x0 =1

La ley que dice que (xm)n = xmn

Primero multiplicas x "m" veces. Después tienes que hacer eso "n" veces, en total m×n veces.

Ejemplo: (x3)4 = (xxx)4 = (xxx)(xxx)(xxx)(xxx) = xxxxxxxxxxxx = x12

Así que (x3)4 = x3×4 = x12

La ley que dice que (xy)n = xnyn

Para ver cómo funciona, sólo piensa en ordenar las "x"s y las "y"s como en este ejemplo:

Ejemplo: (xy)3 = (xy)(xy)(xy) = xyxyxy = xxxyyy = (xxx)(yyy) = x3y3

La ley que dice que (x/y)n = xn/yn

Parecido al ejemplo anterior, sólo ordena las "x"s y las "y"s

Ejemplo: (x/y)3 = (x/y)(x/y)(x/y) = (xxx)/(yyy) = x3/y3

La ley que dice que

Para entenderlo, sólo recuerda de las fracciones que n/m = n × (1/m):

Ejemplo:

Y eso es todo

Si te cuesta recordar todas las leyes, acuérdate de esto: siempre puedes calcular todo si entiendes las tres ideas de la parte de arriba de esta página.