Relación señal a ruido de una señal PM[ editar ]
s
R
(
t
)
=
x
P
M
F
M
(
t
)
=
A
R
cos
(
ω
c
t
+
φ
i
(
t
)
)
;
P
M
→
φ
i
(
t
)
=
ϕ
Δ
x
(
t
)
y
R
(
t
)
=
s
R
(
t
)
+
n
R
(
t
)
{\displaystyle {\begin{aligned}&s_{R}(t)=x_{\begin{smallmatrix}PM\\FM\end{smallmatrix}}(t)=A_{R}\cos \left(\omega _{c}t+\varphi _{i}(t)\right);PM\to \varphi _{i}(t)=\phi _{\Delta }x(t)\\&y_{R}(t)=s_{R}(t)+n_{R}(t)\\\end{aligned}}}
En el bloque de recepción tenemos un detector de fase, esto es, “extraerá” la fase de la señal de entrada. Por lo tanto:
y
P
D
(
t
)
=
φ
T
(
t
)
=
φ
y
R
(
t
)
{\displaystyle y_{PD}(t)=\varphi _{T}(t)=\varphi _{y_{R}}(t)}
Para entenderlo mejor, supongamos que en nuestra señal recibida no hay ruido
y
R
(
t
)
=
A
R
cos
(
ω
c
t
+
ϕ
Δ
x
(
t
)
)
⏟
s
R
(
t
)
+
n
R
(
t
)
⏟
0
y
P
D
(
t
)
=
φ
y
R
(
t
)
→
y
P
D
(
t
)
=
φ
s
R
(
t
)
y
P
D
(
t
)
=
ϕ
Δ
x
(
t
)
G
D
(
f
)
=
G
Y
P
D
(
f
)
⋅
|
H
L
P
F
(
f
)
|
2
=
G
Y
P
D
(
f
)
⏟
ϕ
Δ
2
⋅
S
x
⋅
∏
(
f
2
W
)
=
ϕ
Δ
2
S
x
{\displaystyle {\begin{aligned}&y_{R}(t)=\underbrace {A_{R}\cos \left(\omega _{c}t+\phi _{\Delta }x(t)\right)} _{s_{R}(t)}+\underbrace {n_{R}(t)} _{0}\\&y_{PD}(t)=\varphi _{y_{R}}(t)\to y_{PD}(t)=\varphi _{s_{R}}(t)\\&y_{PD}(t)=\phi _{\Delta }x(t)\\&G_{D}(f)=G_{Y_{PD}}(f)\cdot \left|H_{LPF}(f)\right|^{2}=\underbrace {G_{Y_{PD}}(f)} _{\phi _{_{\Delta }}^{2}\cdot S_{x}}\cdot \prod {\left({\frac {f}{2W}}\right)}=\phi _{_{\Delta }}^{2}S_{x}\\\end{aligned}}}
Pero ahora, consideráramos el caso donde también tenemos ruido a la entrada del bloque de recepción. Haremos una representación vectorial para apreciarlo mejor. (Para vectores lo mejor es usar la envolvente compleja de la señal en cuestión)
s
R
(
t
)
=
x
P
M
F
M
(
t
)
=
A
R
cos
(
ω
c
t
+
φ
i
(
t
)
)
P
M
→
φ
i
(
t
)
=
ϕ
Δ
x
(
t
)
y
R
(
t
)
=
s
R
(
t
)
+
n
R
(
t
)
y
P
D
(
t
)
=
φ
y
R
(
t
)
=
φ
T
(
t
)
?
x
(
t
)
=
x
I
(
t
)
cos
(
ω
c
t
)
−
x
Q
(
t
)
sin
(
ω
c
t
)
=
e
(
t
)
cos
(
ω
c
t
+
φ
(
t
)
)
n
R
(
t
)
=
e
n
R
(
t
)
cos
(
ω
c
t
+
φ
n
R
(
t
)
)
y
R
(
t
)
=
s
R
(
t
)
+
n
R
(
t
)
=
A
T
(
t
)
⏟
=
e
y
R
(
t
)
cos
(
ω
c
t
+
φ
T
(
t
)
)
=
A
R
⏟
=
e
s
R
(
t
)
cos
(
ω
c
t
+
φ
i
(
t
)
)
+
e
n
R
(
t
)
cos
(
ω
c
t
+
φ
n
R
(
t
)
)
y
~
R
(
t
)
=
s
~
R
(
t
)
+
n
~
R
(
t
)
=
A
T
(
t
)
e
j
φ
T
(
t
)
=
A
R
e
j
φ
i
(
t
)
+
e
n
R
(
t
)
e
j
φ
n
R
(
t
)
{\displaystyle {\begin{aligned}&s_{R}(t)=x_{\begin{smallmatrix}PM\\FM\end{smallmatrix}}(t)=A_{R}\cos \left(\omega _{c}t+\varphi _{i}(t)\right)\\&PM\to \varphi _{i}(t)=\phi _{\Delta }x(t)\\&y_{R}(t)=s_{R}(t)+n_{R}(t)\\&y_{PD}(t)=\varphi _{y_{R}}(t)=\varphi _{T}(t)?\\&x(t)=x_{I}(t)\cos(\omega _{c}t)-x_{Q}(t)\sin(\omega _{c}t)=e(t)\cos(\omega _{c}t+\varphi (t))\\&n_{R}(t)=e_{n_{R}}(t)\cos(\omega _{c}t+\varphi _{n_{R}}(t))\\&y_{R}(t)=s_{R}(t)+n_{R}(t)=\underbrace {A_{T}(t)} _{=e_{y_{R}}(t)}\cos(\omega _{c}t+\varphi _{T}(t))=\underbrace {A_{R}} _{=e_{s_{R}}(t)}\cos \left(\omega _{c}t+\varphi _{i}(t)\right)+e_{n_{R}}(t)\cos(\omega _{c}t+\varphi _{n_{R}}(t))\\&\\&{\tilde {y}}_{R}(t)={\tilde {s}}_{R}(t)+{\tilde {n}}_{R}(t)=A_{T}(t)e^{j\varphi _{T}(t)}=A_{R}e^{j\varphi _{i}(t)}+e_{n_{R}}(t)e^{j\varphi _{n_{R}}(t)}\\\end{aligned}}}
φ
T
(
t
)
=
φ
i
(
t
)
+
φ
n
T
O
T
A
L
(
t
)
{\displaystyle \varphi _{T}(t)=\varphi _{i}(t)+\varphi _{n_{TOTAL}}(t)}
Como se aprecia en el dibujo:
arctan
(
φ
n
T
O
T
A
L
(
t
)
)
=
b
(
t
)
a
(
t
)
∡
φ
n
T
O
T
A
L
(
t
)
=
b
(
t
)
a
(
t
)
=
b
(
t
)
A
R
+
c
(
t
)
→
cos
(
φ
n
R
(
t
)
)
=
c
(
t
)
e
n
R
(
t
)
→
c
(
t
)
=
e
n
R
(
t
)
cos
(
φ
n
R
(
t
)
)
sin
(
φ
n
R
(
t
)
)
=
b
(
t
)
e
n
R
(
t
)
→
b
(
t
)
=
e
n
R
(
t
)
sin
(
φ
n
R
(
t
)
)
{
x
~
(
t
)
=
x
I
(
t
)
+
j
x
Q
(
t
)
=
e
(
t
)
e
j
φ
(
t
)
→
ℜ
{
x
~
(
t
)
}
=
x
I
(
t
)
=
ℜ
{
e
(
t
)
e
j
φ
(
t
)
}
=
e
(
t
)
cos
(
φ
(
t
)
)
x
Q
(
t
)
=
e
(
t
)
sin
(
φ
(
t
)
)
}
c
(
t
)
=
e
n
R
(
t
)
cos
(
φ
n
R
(
t
)
)
=
n
R
I
(
t
)
b
(
t
)
=
e
n
R
(
t
)
sin
(
φ
n
R
(
t
)
)
=
n
R
Q
(
t
)
∡
φ
n
T
O
T
A
L
(
t
)
=
b
(
t
)
A
R
+
c
(
t
)
=
n
R
Q
(
t
)
A
R
+
n
R
I
(
t
)
{\displaystyle {\begin{aligned}&\arctan \left(\varphi _{n_{TOTAL}}(t)\right)={\frac {b(t)}{a(t)}}\\&\measuredangle \varphi _{n_{TOTAL}}(t)={\frac {b(t)}{a(t)}}={\frac {b(t)}{A_{R}+c(t)}}\to \\&\cos \left(\varphi _{n_{R}}(t)\right)={\frac {c(t)}{e_{n_{R}}(t)}}\to c(t)=e_{n_{R}}(t)\cos \left(\varphi _{n_{R}}(t)\right)\\&\sin \left(\varphi _{n_{R}}(t)\right)={\frac {b(t)}{e_{n_{R}}(t)}}\to b(t)=e_{n_{R}}(t)\sin \left(\varphi _{n_{R}}(t)\right)\\&\left\{{\begin{aligned}&{\tilde {x}}(t)=x_{I}(t)+jx_{Q}(t)=e(t)e^{j\varphi (t)}\to \Re \left\{{\tilde {x}}(t)\right\}=x_{I}(t)=\Re \left\{e(t)e^{j\varphi (t)}\right\}=e(t)\cos(\varphi (t))\\&x_{Q}(t)=e(t)\sin(\varphi (t))\\\end{aligned}}\right\}\\&c(t)=e_{n_{R}}(t)\cos \left(\varphi _{n_{R}}(t)\right)=n_{R_{I}}(t)\\&b(t)=e_{n_{R}}(t)\sin \left(\varphi _{n_{R}}(t)\right)=n_{R_{Q}}(t)\\&\measuredangle \varphi _{n_{TOTAL}}(t)={\frac {b(t)}{A_{R}+c(t)}}={\frac {n_{R_{Q}}(t)}{A_{R}+n_{R_{I}}(t)}}\\\end{aligned}}}
Ahora, suponemos que
A
R
≫
n
R
I
(
t
)
{\displaystyle A_{R}\gg n_{R_{I}}(t)}
, esto es, que la amplitud de la señal es mas grande que la amplitud del ruido. Esta es una condición necesaria para que el detector funcione, igual que lo que ocurría en la detección AM.
Entonces:
∡
φ
n
T
O
T
A
L
(
t
)
=
n
R
Q
(
t
)
A
R
+
n
R
I
(
t
)
≃
n
R
Q
(
t
)
A
R
{\displaystyle \measuredangle \varphi _{n_{TOTAL}}(t)={\frac {n_{R_{Q}}(t)}{A_{R}+n_{R_{I}}(t)}}\simeq {\frac {n_{R_{Q}}(t)}{A_{R}}}}
y
P
D
(
t
)
→
P
D
:
Pre-Detection filter
y
P
D
(
t
)
=
φ
T
(
t
)
=
φ
i
(
t
)
⏟
ϕ
Δ
x
(
t
)
+
φ
n
T
O
T
A
L
(
t
)
=
ϕ
Δ
x
(
t
)
⏟
s
P
D
(
t
)
+
n
R
Q
(
t
)
A
R
⏟
n
P
D
(
t
)
→
G
x
(
f
)
=
lim
T
→
∞
|
X
(
f
)
|
2
T
G
Y
P
D
(
t
)
=
G
S
P
D
(
f
)
+
G
n
R
Q
(
f
)
=
ϕ
Δ
2
G
x
(
f
)
+
1
A
R
2
G
n
R
Q
(
f
)
G
n
(
f
)
=
η
2
G
n
R
(
f
)
=
η
2
[
∏
(
f
−
f
c
β
T
)
+
∏
(
f
+
f
c
β
T
)
]
G
n
R
Q
(
f
)
=
η
2
⋅
2
⋅
∏
(
f
β
T
)
=
η
∏
(
f
β
T
)
{\displaystyle {\begin{aligned}&y_{PD}(t)\to PD:{\text{Pre-Detection filter}}\\&y_{PD}(t)=\varphi _{T}(t)=\underbrace {\varphi _{i}(t)} _{\phi _{\Delta }x(t)}+\varphi _{n_{TOTAL}}(t)=\underbrace {\phi _{\Delta }x(t)} _{s_{PD}(t)}+\underbrace {\frac {n_{R_{Q}}(t)}{A_{R}}} _{n_{PD}(t)}\to \\&G_{x}(f)={\underset {T\to \infty }{\mathop {\lim } }}\,{\frac {\left|X(f)\right|^{2}}{T}}\\&G_{Y_{PD}}(t)=G_{S_{PD}}(f)+G_{n_{R_{Q}}}(f)=\phi _{\Delta }^{2}G_{x}(f)+{\frac {1}{A_{R}^{2}}}G_{n_{R_{Q}}}(f)\\&G_{n}(f)={\frac {\eta }{2}}\\&G_{n_{R}}(f)={\frac {\eta }{2}}\left[\prod {\left({\frac {f-f_{c}}{\beta _{T}}}\right)+\prod {\left({\frac {f+f_{c}}{\beta _{T}}}\right)}}\right]\\&G_{n_{R_{Q}}}(f)={\frac {\eta }{2}}\cdot 2\cdot \prod {\left({\frac {f}{\beta _{T}}}\right)}=\eta \prod {\left({\frac {f}{\beta _{T}}}\right)}\\\end{aligned}}}
(No olvidar el 2 en la DEP del ruido! )
Ahora finalmente, en detección:
y
D
(
t
)
=
s
D
(
t
)
+
n
D
(
t
)
G
D
(
f
)
=
G
P
D
(
f
)
⋅
|
H
L
P
F
(
f
)
|
2
=
G
P
D
(
f
)
⋅
∏
(
f
2
W
)
s
D
(
t
)
→
G
S
D
(
f
)
=
G
S
P
D
(
f
)
⋅
∏
(
f
2
W
)
G
S
P
D
(
f
)
=
ϕ
Δ
2
G
x
(
f
)
→
G
S
D
(
f
)
=
ϕ
Δ
2
G
x
(
f
)
∏
(
f
2
W
)
⏟
=
G
x
(
f
)
S
D
=
∫
−
∞
∞
G
S
D
(
f
)
∂
f
=
ϕ
Δ
2
S
x
n
D
(
t
)
→
G
n
D
(
f
)
=
G
n
P
D
(
f
)
⋅
∏
(
f
2
W
)
G
n
P
D
(
f
)
=
1
A
R
2
G
n
R
Q
(
f
)
=
1
A
R
2
η
∏
(
f
β
T
)
G
n
D
(
f
)
=
1
A
R
2
η
∏
(
f
β
T
)
⋅
∏
(
f
2
W
)
→
{
β
T
>
2
W
}
→
G
n
D
(
f
)
=
1
A
R
2
η
∏
(
f
2
W
)
N
D
=
∫
−
∞
∞
G
n
D
(
f
)
∂
f
=
1
A
R
2
η
2
W
{\displaystyle {\begin{aligned}&y_{D}(t)=s_{D}(t)+n_{D}(t)\\&G_{D}(f)=G_{PD}(f)\cdot \left|H_{LPF}(f)\right|^{2}=G_{PD}(f)\cdot \prod {\left({\frac {f}{2W}}\right)}\\&s_{D}(t)\to G_{S_{D}}(f)=G_{S_{PD}}(f)\cdot \prod {\left({\frac {f}{2W}}\right)}\\&G_{S_{PD}}(f)=\phi _{\Delta }^{2}G_{x}(f)\to G_{S_{D}}(f)=\phi _{\Delta }^{2}\underbrace {G_{x}(f)\prod {\left({\frac {f}{2W}}\right)}} _{=G_{x}(f)}\\&S_{D}=\int _{-\infty }^{\infty }{G_{S_{D}}(f)\partial f}=\phi _{\Delta }^{2}S_{x}\\&\\&n_{D}(t)\to G_{n_{D}}(f)=G_{n_{PD}}(f)\cdot \prod {\left({\frac {f}{2W}}\right)}\\&G_{n_{PD}}(f)={\frac {1}{A_{R}^{2}}}G_{n_{R_{Q}}}(f)={\frac {1}{A_{R}^{2}}}\eta \prod {\left({\frac {f}{\beta _{T}}}\right)}\\&G_{n_{D}}(f)={\frac {1}{A_{R}^{2}}}\eta \prod {\left({\frac {f}{\beta _{T}}}\right)}\cdot \prod {\left({\frac {f}{2W}}\right)}\to \left\{\beta _{T}>2W\right\}\to G_{n_{D}}(f)={\frac {1}{A_{R}^{2}}}\eta \prod {\left({\frac {f}{2W}}\right)}\\&N_{D}=\int _{-\infty }^{\infty }{G_{n_{D}}(f)\partial f}={\frac {1}{A_{R}^{2}}}\eta 2W\\\end{aligned}}}
(
S
╱
N
)
D
=
S
D
N
D
=
ϕ
Δ
2
S
x
1
A
R
2
η
2
W
=
A
R
2
2
ϕ
Δ
2
S
x
η
W
→
{
S
P
M
F
M
=
A
c
2
2
,
S
R
=
A
R
2
2
}
(
S
╱
N
)
D
=
ϕ
Δ
2
S
x
S
R
η
W
→
{
γ
=
S
R
η
W
}
→
(
S
╱
N
)
D
=
ϕ
Δ
2
S
x
γ
{\displaystyle {\begin{aligned}&\\&\left({}^{S}\!\!\diagup \!\!{}_{N}\;\right)_{D}={\frac {S_{D}}{N_{D}}}={\frac {\phi _{\Delta }^{2}S_{x}}{{\frac {1}{A_{R}^{2}}}\eta 2W}}={\frac {A_{R}^{2}}{2}}{\frac {\phi _{\Delta }^{2}S_{x}}{\eta W}}\to \left\{S_{\begin{smallmatrix}PM\\FM\end{smallmatrix}}={\frac {A_{c}^{2}}{2}},S_{R}={\frac {A_{R}^{2}}{2}}\right\}\\&\left({}^{S}\!\!\diagup \!\!{}_{N}\;\right)_{D}={\frac {\phi _{\Delta }^{2}S_{x}S_{R}}{\eta W}}\to \left\{\gamma ={\frac {S_{R}}{\eta W}}\right\}\to \left({}^{S}\!\!\diagup \!\!{}_{N}\;\right)_{D}=\phi _{\Delta }^{2}S_{x}\gamma \\\end{aligned}}}
Relación señal a ruido de una señal FM[ editar ]
Para FM, en vez de la fase, detectamos la frecuencia:
s
R
(
t
)
=
x
P
M
F
M
(
t
)
=
A
R
cos
(
ω
c
t
+
φ
i
(
t
)
)
F
M
→
f
i
(
t
)
=
f
c
+
f
Δ
x
(
t
)
→
φ
i
(
t
)
=
2
π
f
Δ
∫
−
∞
t
x
(
λ
)
∂
λ
y
R
(
t
)
=
s
R
(
t
)
+
n
R
(
t
)
y
P
D
(
t
)
=
f
T
(
t
)
=
1
2
π
∂
φ
T
(
t
)
∂
t
=
1
2
π
∂
φ
y
R
(
t
)
∂
t
=
?
φ
T
(
t
)
=
φ
i
(
t
)
+
φ
n
T
O
T
A
L
(
t
)
f
T
(
t
)
=
1
2
π
∂
φ
T
(
t
)
∂
t
=
1
2
π
∂
φ
i
(
t
)
∂
t
+
1
2
π
∂
φ
n
T
O
T
A
L
(
t
)
∂
t
=
f
T
(
t
)
=
f
Δ
x
(
t
)
+
1
2
π
∂
φ
n
T
O
T
A
L
(
t
)
∂
t
∡
φ
n
T
O
T
A
L
(
t
)
=
n
R
Q
(
t
)
A
R
+
n
R
I
(
t
)
≃
n
R
Q
(
t
)
A
R
f
T
(
t
)
=
f
Δ
x
(
t
)
+
1
2
π
1
A
R
∂
n
R
Q
(
t
)
∂
t
{\displaystyle {\begin{aligned}&s_{R}(t)=x_{\begin{smallmatrix}PM\\FM\end{smallmatrix}}(t)=A_{R}\cos \left(\omega _{c}t+\varphi _{i}(t)\right)\\&FM\to f_{i}(t)=f_{c}+f_{\Delta }x(t)\to \varphi _{i}(t)=2\pi f_{\Delta }\int _{-\infty }^{t}{x(\lambda )\partial \lambda }\\&y_{R}(t)=s_{R}(t)+n_{R}(t)\\&y_{PD}(t)=f_{T}(t)={\frac {1}{2\pi }}{\frac {\partial \varphi _{T}(t)}{\partial t}}={\frac {1}{2\pi }}{\frac {\partial \varphi _{y_{R}}(t)}{\partial t}}=?\\&\\&\varphi _{T}(t)=\varphi _{i}(t)+\varphi _{n_{TOTAL}}(t)\\&f_{T}(t)={\frac {1}{2\pi }}{\frac {\partial \varphi _{T}(t)}{\partial t}}={\frac {1}{2\pi }}{\frac {\partial \varphi _{i}(t)}{\partial t}}+{\frac {1}{2\pi }}{\frac {\partial \varphi _{n_{TOTAL}}(t)}{\partial t}}=\\&f_{T}(t)=f_{\Delta }x(t)+{\frac {1}{2\pi }}{\frac {\partial \varphi _{n_{TOTAL}}(t)}{\partial t}}\\&\measuredangle \varphi _{n_{TOTAL}}(t)={\frac {n_{R_{Q}}(t)}{A_{R}+n_{R_{I}}(t)}}\simeq {\frac {n_{R_{Q}}(t)}{A_{R}}}\\&f_{T}(t)=f_{\Delta }x(t)+{\frac {1}{2\pi }}{\frac {1}{A_{R}}}{\frac {\partial n_{R_{Q}}(t)}{\partial t}}\\\end{aligned}}}
G
x
(
f
)
=
lim
T
→
∞
|
X
(
f
)
|
2
T
{
F
[
∂
f
(
t
)
∂
t
]
=
(
j
2
π
f
)
F
(
f
)
}
N
P
D
(
f
)
=
F
[
1
2
π
1
A
R
∂
n
R
Q
(
t
)
∂
t
]
=
1
2
π
1
A
R
(
j
2
π
f
)
N
R
Q
(
f
)
=
j
⋅
f
A
R
N
R
Q
(
f
)
G
Y
P
D
(
t
)
=
G
S
P
D
(
f
)
+
G
n
P
D
(
f
)
=
f
Δ
2
G
x
(
f
)
+
f
2
A
R
2
G
n
R
Q
(
f
)
G
n
(
f
)
=
η
2
G
n
R
(
f
)
=
η
2
[
∏
(
f
−
f
c
β
T
)
+
∏
(
f
+
f
c
β
T
)
]
G
n
R
Q
(
f
)
=
η
2
⋅
2
⋅
∏
(
f
β
T
)
=
η
∏
(
f
β
T
)
y
D
(
t
)
=
s
D
(
t
)
+
n
D
(
t
)
G
D
(
f
)
=
G
P
D
(
f
)
⋅
|
H
L
P
F
(
f
)
|
2
=
G
P
D
(
f
)
⋅
∏
(
f
2
W
)
s
D
(
t
)
→
G
S
D
(
f
)
=
G
S
P
D
(
f
)
⋅
∏
(
f
2
W
)
G
S
P
D
(
f
)
=
f
Δ
2
G
x
(
f
)
→
G
S
D
(
f
)
=
f
Δ
2
G
x
(
f
)
∏
(
f
2
W
)
⏟
=
G
x
(
f
)
S
D
=
∫
−
∞
∞
G
S
D
(
f
)
∂
f
=
f
Δ
2
S
x
n
D
(
t
)
→
G
n
D
(
f
)
=
G
n
P
D
(
f
)
⋅
∏
(
f
2
W
)
G
n
P
D
(
f
)
=
f
2
A
R
2
G
n
R
Q
(
f
)
=
f
2
A
R
2
η
∏
(
f
β
T
)
G
n
D
(
f
)
=
f
2
A
R
2
η
∏
(
f
β
T
)
⋅
∏
(
f
2
W
)
→
{
β
T
>
2
W
}
→
G
n
D
(
f
)
=
f
2
A
R
2
η
∏
(
f
2
W
)
N
D
=
∫
−
∞
∞
G
n
D
(
f
)
∂
f
=
∫
−
W
W
f
2
A
R
2
η
∂
f
=
η
A
R
2
∫
−
W
W
f
2
∂
f
=
η
A
R
2
f
3
3
|
−
W
W
=
N
D
=
η
A
R
2
2
W
3
3
{\displaystyle {\begin{aligned}&G_{x}(f)={\underset {T\to \infty }{\mathop {\lim } }}\,{\frac {\left|X(f)\right|^{2}}{T}}\\&\left\{\mathbb {F} \left[{\frac {\partial f(t)}{\partial t}}\right]=\left(j2\pi f\right)F(f)\right\}\\&N_{PD}(f)=\mathbb {F} \left[{\frac {1}{2\pi }}{\frac {1}{A_{R}}}{\frac {\partial n_{R_{Q}}(t)}{\partial t}}\right]={\frac {1}{2\pi }}{\frac {1}{A_{R}}}\left(j2\pi f\right)N_{R_{Q}}(f)={\frac {j\cdot f}{A_{R}}}N_{R_{Q}}(f)\\&G_{Y_{PD}}(t)=G_{S_{PD}}(f)+G_{n_{PD}}(f)=f_{\Delta }^{2}G_{x}(f)+{\frac {f^{2}}{A_{R}^{2}}}G_{n_{R_{Q}}}(f)\\&G_{n}(f)={\frac {\eta }{2}}\\&G_{n_{R}}(f)={\frac {\eta }{2}}\left[\prod {\left({\frac {f-f_{c}}{\beta _{T}}}\right)+\prod {\left({\frac {f+f_{c}}{\beta _{T}}}\right)}}\right]\\&G_{n_{R_{Q}}}(f)={\frac {\eta }{2}}\cdot 2\cdot \prod {\left({\frac {f}{\beta _{T}}}\right)}=\eta \prod {\left({\frac {f}{\beta _{T}}}\right)}\\&y_{D}(t)=s_{D}(t)+n_{D}(t)\\&G_{D}(f)=G_{PD}(f)\cdot \left|H_{LPF}(f)\right|^{2}=G_{PD}(f)\cdot \prod {\left({\frac {f}{2W}}\right)}\\&s_{D}(t)\to G_{S_{D}}(f)=G_{S_{PD}}(f)\cdot \prod {\left({\frac {f}{2W}}\right)}\\&G_{S_{PD}}(f)=f_{\Delta }^{2}G_{x}(f)\to G_{S_{D}}(f)=f_{\Delta }^{2}\underbrace {G_{x}(f)\prod {\left({\frac {f}{2W}}\right)}} _{=G_{x}(f)}\\&S_{D}=\int _{-\infty }^{\infty }{G_{S_{D}}(f)\partial f}=f_{\Delta }^{2}S_{x}\\&\\&n_{D}(t)\to G_{n_{D}}(f)=G_{n_{PD}}(f)\cdot \prod {\left({\frac {f}{2W}}\right)}\\&G_{n_{PD}}(f)={\frac {f^{2}}{A_{R}^{2}}}G_{n_{R_{Q}}}(f)={\frac {f^{2}}{A_{R}^{2}}}\eta \prod {\left({\frac {f}{\beta _{T}}}\right)}\\&G_{n_{D}}(f)={\frac {f^{2}}{A_{R}^{2}}}\eta \prod {\left({\frac {f}{\beta _{T}}}\right)}\cdot \prod {\left({\frac {f}{2W}}\right)}\to \left\{\beta _{T}>2W\right\}\to G_{n_{D}}(f)={\frac {f^{2}}{A_{R}^{2}}}\eta \prod {\left({\frac {f}{2W}}\right)}\\&N_{D}=\int _{-\infty }^{\infty }{G_{n_{D}}(f)\partial f}=\int _{-W}^{W}{{\frac {f^{2}}{A_{R}^{2}}}\eta \partial f}={\frac {\eta }{A_{R}^{2}}}\int _{-W}^{W}{f^{2}\partial f}={\frac {\eta }{A_{R}^{2}}}\left.{\frac {f^{3}}{3}}\right|_{-W}^{W}=\\&N_{D}={\frac {\eta }{A_{R}^{2}}}{\frac {2W^{3}}{3}}\\\end{aligned}}}
Ahora, la relación señal a ruido en detección será:
(
S
╱
N
)
D
=
S
D
N
D
=
f
Δ
2
S
x
η
A
R
2
2
W
3
3
=
A
R
2
2
3
f
Δ
2
S
x
η
W
3
→
{
S
P
M
F
M
=
A
c
2
2
,
S
R
=
A
R
2
2
}
(
S
╱
N
)
D
=
S
R
3
f
Δ
2
S
x
η
W
3
=
S
R
η
W
3
f
Δ
2
S
x
W
2
=
3
(
f
Δ
W
)
2
S
x
S
R
η
W
→
{
γ
=
S
R
η
W
}
→
(
S
╱
N
)
D
=
3
(
f
Δ
W
)
2
S
x
γ
{\displaystyle {\begin{aligned}&\left({}^{S}\!\!\diagup \!\!{}_{N}\;\right)_{D}={\frac {S_{D}}{N_{D}}}={\frac {f_{\Delta }^{2}S_{x}}{{\frac {\eta }{A_{R}^{2}}}{\frac {2W^{3}}{3}}}}={\frac {A_{R}^{2}}{2}}{\frac {3f_{\Delta }^{2}S_{x}}{\eta W^{3}}}\to \left\{S_{\begin{smallmatrix}PM\\FM\end{smallmatrix}}={\frac {A_{c}^{2}}{2}},S_{R}={\frac {A_{R}^{2}}{2}}\right\}\\&\left({}^{S}\!\!\diagup \!\!{}_{N}\;\right)_{D}=S_{R}{\frac {3f_{\Delta }^{2}S_{x}}{\eta W^{3}}}={\frac {S_{R}}{\eta W}}{\frac {3f_{\Delta }^{2}S_{x}}{W^{2}}}=3\left({\frac {f_{\Delta }}{W}}\right)^{2}S_{x}{\frac {S_{R}}{\eta W}}\to \left\{\gamma ={\frac {S_{R}}{\eta W}}\right\}\to \\&\left({}^{S}\!\!\diagup \!\!{}_{N}\;\right)_{D}=3\left({\frac {f_{\Delta }}{W}}\right)^{2}S_{x}\gamma \\\end{aligned}}}
Filtro Pre-emphasis y De-emphasis [ editar ]
Para el caso de demodulación FM, En vez de usar un filtro paso-bajo ideal, ahora usaremos un:
Filtro De-emphasis:
H
d
e
(
f
)
=
1
1
+
j
2
π
f
f
1
=
1
1
+
j
⋅
f
B
d
e
f
1
=
1
2
π
R
C
→
B
d
e
=
1
R
C
|
H
d
e
(
f
)
|
2
=
1
1
+
(
f
B
d
e
)
2
S
D
=
∫
−
∞
∞
G
S
D
(
f
)
∂
f
=
f
Δ
2
S
x
G
n
P
D
(
f
)
=
f
2
A
R
2
G
n
R
Q
(
f
)
=
f
2
A
R
2
η
∏
(
f
β
T
)
n
D
(
t
)
→
G
n
D
(
f
)
=
G
n
P
D
(
f
)
⋅
|
H
L
P
F
(
f
)
|
2
|
H
D
E
(
f
)
|
2
=
f
2
A
R
2
η
∏
(
f
β
T
)
⋅
∏
(
f
2
W
)
|
H
L
P
F
(
f
)
|
2
→
{
β
T
>
2
W
}
→
G
n
D
(
f
)
=
f
2
A
R
2
η
∏
(
f
2
W
)
|
H
D
E
(
f
)
|
2
=
f
2
A
R
2
η
∏
(
f
2
W
)
1
1
+
(
f
B
d
e
)
2
N
D
=
∫
−
∞
∞
G
n
D
(
f
)
∂
f
=
∫
−
W
W
f
2
A
R
2
η
1
1
+
(
f
B
d
e
)
2
∂
f
=
η
A
R
2
∫
−
W
W
f
2
1
+
(
f
B
d
e
)
2
∂
f
→
{
∫
1
1
+
x
2
∂
x
=
arctan
x
→
∫
1
−
1
1
+
x
2
∂
x
=
∫
x
2
1
+
x
2
∂
x
=
x
−
arctan
x
}
→
{
x
=
f
B
d
e
∂
x
=
∂
f
B
d
e
}
→
∫
x
2
1
+
x
2
∂
x
=
x
−
arctan
x
=
∫
(
f
B
d
e
)
2
1
+
(
f
B
d
e
)
2
1
B
d
e
∂
f
=
(
f
B
d
e
)
−
arctan
(
f
B
d
e
)
N
D
=
η
A
R
2
∫
−
W
W
f
2
1
+
(
f
B
d
e
)
2
∂
f
=
η
A
R
2
(
B
d
e
)
2
(
B
d
e
)
2
B
d
e
B
d
e
∫
−
W
W
f
2
1
+
(
f
B
d
e
)
2
∂
f
=
η
A
R
2
(
B
d
e
)
3
∫
−
W
W
(
f
B
d
e
)
2
1
+
(
f
B
d
e
)
2
1
B
d
e
∂
f
=
N
D
=
η
A
R
2
B
d
e
3
[
(
f
B
d
e
)
−
arctan
(
f
B
d
e
)
⏟
≈
π
≪
W
╱
B
d
e
]
−
W
W
=
η
A
R
2
B
d
e
3
(
2
W
B
d
e
)
=
η
A
R
2
B
d
e
2
2
W
{\displaystyle {\begin{aligned}&H_{de}(f)={\frac {1}{1+{\frac {j2\pi f}{f_{1}}}}}={\frac {1}{1+{\frac {j\cdot f}{B_{de}}}}}\\&f_{1}={\frac {1}{2\pi RC}}\to B_{de}={\frac {1}{RC}}\\&\left|H_{de}(f)\right|^{2}={\frac {1}{1+\left({\frac {f}{B_{de}}}\right)^{2}}}\\&\\&S_{D}=\int _{-\infty }^{\infty }{G_{S_{D}}(f)\partial f}=f_{\Delta }^{2}S_{x}\\&G_{n_{PD}}(f)={\frac {f^{2}}{A_{R}^{2}}}G_{n_{R_{Q}}}(f)={\frac {f^{2}}{A_{R}^{2}}}\eta \prod {\left({\frac {f}{\beta _{T}}}\right)}\\&n_{D}(t)\to G_{n_{D}}(f)=G_{n_{PD}}(f)\cdot \left|H_{LPF}(f)\right|^{2}\left|H_{DE}(f)\right|^{2}={\frac {f^{2}}{A_{R}^{2}}}\eta \prod {\left({\frac {f}{\beta _{T}}}\right)}\cdot \prod {\left({\frac {f}{2W}}\right)}\left|H_{LPF}(f)\right|^{2}\to \left\{\beta _{T}>2W\right\}\to \\&G_{n_{D}}(f)={\frac {f^{2}}{A_{R}^{2}}}\eta \prod {\left({\frac {f}{2W}}\right)}\left|H_{DE}(f)\right|^{2}={\frac {f^{2}}{A_{R}^{2}}}\eta \prod {\left({\frac {f}{2W}}\right)}{\frac {1}{1+\left({\frac {f}{B_{de}}}\right)^{2}}}\\&N_{D}=\int _{-\infty }^{\infty }{G_{n_{D}}(f)\partial f}=\int _{-W}^{W}{{\frac {f^{2}}{A_{R}^{2}}}\eta {\frac {1}{1+\left({\frac {f}{B_{de}}}\right)^{2}}}\partial f}={\frac {\eta }{A_{R}^{2}}}\int _{-W}^{W}{{\frac {f^{2}}{1+\left({\frac {f}{B_{de}}}\right)^{2}}}\partial f}\to \\&\left\{\int {{\frac {1}{1+x^{2}}}\partial x=\arctan x\to \int {1-{\frac {1}{1+x^{2}}}\partial x=\int {{\frac {x^{2}}{1+x^{2}}}\partial x=}x-\arctan x}}\right\}\to \left\{{\begin{aligned}&x={\frac {f}{B_{de}}}\\&\partial x={\frac {\partial f}{B_{de}}}\\\end{aligned}}\right\}\to \\&\int {{\frac {x^{2}}{1+x^{2}}}\partial x=}x-\arctan x=\int {{\frac {\left({\frac {f}{B_{de}}}\right)^{2}}{1+\left({\frac {f}{B_{de}}}\right)^{2}}}{\frac {1}{B_{de}}}\partial f=}\left({\frac {f}{B_{de}}}\right)-\arctan \left({\frac {f}{B_{de}}}\right)\\&N_{D}={\frac {\eta }{A_{R}^{2}}}\int _{-W}^{W}{{\frac {f^{2}}{1+\left({\frac {f}{B_{de}}}\right)^{2}}}\partial f}={\frac {\eta }{A_{R}^{2}}}{\frac {\left(B_{de}\right)^{2}}{\left(B_{de}\right)^{2}}}{\frac {B_{de}}{B_{de}}}\int _{-W}^{W}{{\frac {f^{2}}{1+\left({\frac {f}{B_{de}}}\right)^{2}}}\partial f}={\frac {\eta }{A_{R}^{2}}}\left(B_{de}\right)^{3}\int _{-W}^{W}{{\frac {\left({\frac {f}{B_{de}}}\right)^{2}}{1+\left({\frac {f}{B_{de}}}\right)^{2}}}{\frac {1}{B_{de}}}\partial f}=\\&N_{D}={\frac {\eta }{A_{R}^{2}}}B_{de}^{3}\left[\left({\frac {f}{B_{de}}}\right)-\underbrace {\arctan \left({\frac {f}{B_{de}}}\right)} _{\approx \pi \ll {}^{W}\!\!\diagup \!\!{}_{B_{de}}\;}\right]_{-W}^{W}={\frac {\eta }{A_{R}^{2}}}B_{de}^{3}\left({\frac {2W}{B_{de}}}\right)={\frac {\eta }{A_{R}^{2}}}B_{de}^{2}2W\\\end{aligned}}}
(
S
╱
N
)
D
=
?
S
D
=
f
Δ
2
S
x
N
D
=
η
A
R
2
B
d
e
2
2
W
(
S
╱
N
)
D
=
S
D
N
D
=
f
Δ
2
S
x
η
A
R
2
B
d
e
2
2
W
=
(
f
Δ
B
d
e
)
2
S
x
A
R
2
2
1
η
W
=
(
f
Δ
B
d
e
)
2
S
x
S
R
η
W
=
(
f
Δ
B
d
e
)
2
S
x
γ
{\displaystyle {\begin{aligned}&\left({}^{S}\!\!\diagup \!\!{}_{N}\;\right)_{D}=?\\&S_{D}=f_{\Delta }^{2}S_{x}\\&N_{D}={\frac {\eta }{A_{R}^{2}}}B_{de}^{2}2W\\&\left({}^{S}\!\!\diagup \!\!{}_{N}\;\right)_{D}={\frac {S_{D}}{N_{D}}}={\frac {f_{\Delta }^{2}S_{x}}{{\frac {\eta }{A_{R}^{2}}}B_{de}^{2}2W}}=\left({\frac {f_{\Delta }}{B_{de}}}\right)^{2}S_{x}{\frac {A_{R}^{2}}{2}}{\frac {1}{\eta W}}=\left({\frac {f_{\Delta }}{B_{de}}}\right)^{2}S_{x}{\frac {S_{R}}{\eta W}}=\left({\frac {f_{\Delta }}{B_{de}}}\right)^{2}S_{x}\gamma \\\end{aligned}}}
Si ahora comparamos la relación señal a ruido en detección en FM con filtro deemphasis y si deemphasis:
(
S
╱
N
)
D
F
M
=
3
(
f
Δ
W
)
2
S
x
γ
(
S
╱
N
)
D
F
M
d
e
=
(
f
Δ
B
d
e
)
2
S
x
γ
(
S
╱
N
)
D
F
M
d
e
(
S
╱
N
)
D
F
M
=
(
f
Δ
B
d
e
)
2
S
x
γ
3
(
f
Δ
W
)
2
S
x
γ
=
1
3
(
W
B
d
e
)
2
⇒
>
1
?
→
W
>
3
B
d
e
{\displaystyle {\begin{aligned}&\left({}^{S}\!\!\diagup \!\!{}_{N}\;\right)_{D}^{FM}=3\left({\frac {f_{\Delta }}{W}}\right)^{2}S_{x}\gamma \\&\left({}^{S}\!\!\diagup \!\!{}_{N}\;\right)_{D}^{FM_{de}}=\left({\frac {f_{\Delta }}{B_{de}}}\right)^{2}S_{x}\gamma \\&{\frac {\left({}^{S}\!\!\diagup \!\!{}_{N}\;\right)_{D}^{FM_{de}}}{\left({}^{S}\!\!\diagup \!\!{}_{N}\;\right)_{D}^{FM}}}={\frac {\left({\frac {f_{\Delta }}{B_{de}}}\right)^{2}S_{x}\gamma }{3\left({\frac {f_{\Delta }}{W}}\right)^{2}S_{x}\gamma }}={\frac {1}{3}}\left({\frac {W}{B_{de}}}\right)^{2}\Rightarrow \\&>1?\to W>{\sqrt {3}}B_{de}\\\end{aligned}}}
Tiene sentido porque si nuestro filtro deemphasis es mas restrictivo (mas pequeño), menor será el ruido que deje pasar con lo que aumentará la relación señal a ruido